Problem 26.11

For an air-filled parallel plate capacitor:

a.) The relationship between voltage differences and electric fields yields:

$$\Delta V = -\vec{E} \cdot \vec{d} = -V_C$$

$$\Rightarrow |\vec{E}| = \frac{V_C}{d}$$

$$\Rightarrow = \frac{(20.0 \text{ V})}{(1.80 \text{x} 10^{-3} \text{ m})}$$

$$= 1.11 \text{x} 10^4 \text{ V/m} \text{ (toward the negative plate)}$$

b.) The charge density on the plates is:

For a conductor,
$$E = \frac{\sigma}{\varepsilon_o}$$
 \Rightarrow $\sigma = \varepsilon_o E$
$$= \left(8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2\right) \left(1.11 \times 10^4 \text{ V/m}\right)$$
$$= 9.83 \times 10^{-9} \text{ C/m}^2$$

1.)

c.) For an air-filled, parallel plate capacitor:

$$C = \varepsilon_o \frac{A}{d}$$
= $\left(8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2\right) \frac{\left(7.60 \times 10^{-4} \text{ m}^2\right)}{\left(1.8010^{-3} \text{ m}\right)}$
= $3.74 \times 10^{-12} \text{ F}$ (or 3.74 pF)

d.) For the charge on one plate (or the charge "on the capacitor")

$$C = \frac{Q}{V_C}$$

$$\Rightarrow Q = CV_C \left(8.85 \times 10^{-12} \text{ C}^2 / \text{N} \cdot \text{m}^2 \right) \frac{\left(7.60 \times 10^{-4} \text{ m}^2 \right)}{\left(1.8010^{-3} \text{ m} \right)}$$

$$= \left(3.74 \times 10^{-12} \text{ F} \right) \left(20.0 \text{ V} \right)$$

$$= 74.7 \times 10^{-12} \text{ C}$$

2.)